skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yodh, A G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Large shear deformations can induce structural changes within crystals, yet the microscopic kinetics underlying these transformations are difficult for experimental observation and theoretical understanding. Here, we drive shear-induced structural transitions from square ( ) lattices to triangular ( ) lattices in thin-film colloidal crystals and directly observe the accompanying kinetics with single-particle resolution inside the bulk crystal. When the oscillatory shear strain amplitude 0.1 γ m < 0.4 , -lattice nuclei are surrounded by a liquid layer throughout their growth due to localized shear strain at the interface. Such virtual melting at crystalline interface has been predicted in theory and simulation, but have not been observed in experiment. The mean liquid layer thickness is proportional to the shear which can be explained by the Lindemann melting criterion. This provides an alternative explanation on virtual melting. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  2. Abstract Hydrodynamic interactions are important for diverse fluids, especially those with low Reynolds number such as microbial and particle-laden suspensions, and proteins diffusing in membranes. Unfortunately, while far-field (asymptotic) hydrodynamic interactions are fully understood in two- and three-dimensions, near-field interactions are not, and thus our understanding of motions in dense fluid suspensions is still lacking. In this contribution, we experimentally explore the hydrodynamic correlations between particles in quasi-two-dimensional colloidal fluids in the near-field. Surprisingly, the measured displacement and relaxation of particle pairs in the body frame exhibit direction-dependent dynamics that can be connected quantitatively to the measured near-field hydrodynamic interactions. These findings, in turn, suggest a mechanism for how and when hydrodynamics can lead to a breakdown of the ubiquitous Stokes-Einstein relation (SER). We observe this breakdown, and we show that the direction-dependent breakdown of the SER is ameliorated along directions where hydrodynamic correlations are smallest. In total, the work uncovers significant ramifications of near-field hydrodynamics on transport and dynamic restructuring of fluids in two-dimensions. 
    more » « less
  3. We investigate quasi-two-dimensional buckled colloidal monolayers on a triangular lattice with tunable depletion interactions. Without depletion attraction, the experimental system provides a colloidal analog of the well-known geometrically frustrated Ising antiferromagnet [Y. Han et al., Nature 456, 898–903 (2008)]. In this contribution, we show that the added depletion attraction can influence both the magnitude and sign of an Ising spin coupling constant. As a result, the nearest-neighbor Ising “spin” interactions can be made to vary from antiferromagnetic to para- and ferromagnetic. Using a simple theory, we compute an effective Ising nearest-neighbor coupling constant, and we show how competition between entropic effects permits for the modification of the coupling constant. We then experimentally demonstrate depletion-induced modification of the coupling constant, including its sign, and other behaviors. Depletion interactions are induced by rod-like surfactant micelles that change length with temperature and thus offer means for tuning the depletion attraction in situ. Buckled colloidal suspensions exhibit a crossover from an Ising antiferromagnetic to paramagnetic phase as a function of increasing depletion attraction. Additional dynamical experiments reveal structural arrest in various regimes of the coupling-constant, driven by different mechanisms. In total, this work introduces novel colloidal matter with “magnetic” features and complex dynamics rarely observed in traditional spin systems. 
    more » « less
  4. This work characterizes twist disclinations in nematic liquid crystals, using confocal microscopy to measure their 3D profile and test theoretical predictions, and using magnetic fields to deform the disclinations and measure their line tension. 
    more » « less
    Free, publicly-accessible full text available November 20, 2025
  5. Liquid crystalline phases of matter often exhibit visually stunning patterns or textures. Mostly, these liquid crystal (LC) configurations are uniquely determined by bulk LC elasticity, surface anchoring conditions, and confinement geometry. Here, we experimentally explore defect textures of the smectic LC phase in unique confining geometries with variable curvature. We show that a complex range of director configurations can arise from a single system, depending on sample processing procedures. Specifically, we report on LC textures in Janus drops comprised of silicone oil and 8CB in its smectic-A LC phase. The Janus droplets were made in aqueous suspension using solvent-induced phase separation. After drop creation, smectic layers form in the LC compartment, but their self-assembly is frustrated by the need to accommodate both the bowl-shaped cavity geometry and homeotropic (perpendicular) anchoring conditions at boundaries. A variety of stable and metastable smectic textures arise, including focal conic domains, dislocation rings, and undulations. We experimentally characterize their stabilities and follow their spatiotemporal evolution. Overall, a range of fabrication kinetics produce very different intermediate and final states. The observations elucidate assembly mechanisms and suggest new routes for fabrication of complex soft material structures in Janus drops and other confinement geometries. 
    more » « less